Indian Statistical Institute, Bangalore

B.Math (Hons.) I Year, First Semester Backpaper Examination - Dec 2011

Time: 3 hours Analysis I Instructor: C.R.E.Raja Maximum marks: 50

Answer all questions, each question is worth 10 marks

- If (a_n) and (b_n) converge, prove that:
 i)(a_n ± b_n), (ca_n) and (a_nb_n) converge for any constant c and ii)(a_n) is bounded.
- 2. (a) Let f: R → R be a function. Prove that f is continuous at x ∈ R if and only if lim f(x_n) = f(x) for any sequence x_n → x.
 (b) If f: I → R is continuous and x, y ∈ I with s lying between f(x) and f(y), prove that there is a t between x and y such that f(t) = s.
- 3. Let f: (a, b) → R be a uniformly continuous function. Then prove the following:
 (a)lim_{x→a} f(x) exists,
 - (b) there is a continuous function $F: [a, b] \to \mathbb{R}$ such that F = f on (a, b).
 - (c) f is bounded.
- 4. (a) Let $f, g: \mathbb{R} \to \mathbb{R}$ be functions such that f'(x), g'(x) exist with $g'(x) \neq 0$ and f(x) = 0 = g(x) for some $x \in \mathbb{R}$. Prove that $\lim_{t \to x} f(t)/g(t) = \frac{f'(x)}{g'(x)}$.

(b) Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Prove that f is convex if and only if f' is increasing.

5. Let f: R → R be a differentiable function.
(a) If f'(t) ≠ 1 for all t ∈ R, prove that there is at most one x ∈ R such that f(x) = x.

(b) If $\sup_{t \in \mathbb{R}} |f'(t)| < 1$, prove that f has a unique $x \in \mathbb{R}$ such that f(x) = x.